Abstract

The response of the upper-ocean temperatures and currents in the tropical Pacific to the spatial distribution of chlorophyll-a and its seasonal cycle is investigated using a coupled atmosphere-ocean model and a stand-alone oceanic general circulation model. The spatial distribution of chlorophyll-a significantly influences the mean state of models in the tropical Pacific. The annual mean SST in the eastern equatorial Pacific decreases accompanied by a shallow thermocline and stronger currents because of shallow penetration depth of solar radiation. Equatorial upwelling dominates the heat budget in that region. Atmosphere-ocean interaction processes can further amplify such changes. The seasonal cycle of chlorophyll-a can dramatically change ENSO period in the coupled model. After introducing the seasonal cycle of chlorophyll-a concentration, the peak of the power spectrum becomes broad, and longer periods (>3 years) are found. These changes led to ENSO irregularities in the model. The increasing period is mainly due to the slow speed of Rossby waves, which are caused by the shallow mean thermocline in the northeastern Pacific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call