Abstract
Abstract We perform an analysis of the line-of-sight (LOS) observables of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) for models of the solar atmosphere heated by precipitating high-energy electrons during solar flares. The radiative hydrodynamic (RADYN) flare models are obtained from the F-CHROMA database. The Stokes profiles for the Fe 6173 Å line observed by SDO/HMI are calculated using the radiative transfer code RH1.5D, assuming statistical equilibrium for atomic level populations, and imposing uniform background vertical magnetic fields of various strengths. The SDO/HMI observing sequence and LOS data processing pipeline algorithm are applied to derive the observables (continuum intensity, line depth, Doppler velocity, LOS magnetic field). Our results reveal that the strongest deviations of the observables from the actual spectroscopic line parameters are found for the model with a total energy deposited of E total = 1.0 × 1012 erg cm−2, injected with a power-law spectral index of δ = 3 above a low-energy cutoff of E c = 25 keV. The magnitudes of the velocity and magnetic field deviations depend on the imposed magnetic field, and can reach 0.35 km s−1 for LOS velocities, 90 G for LOS magnetic field, and 3% for continuum enhancement for the 1000 G imposed LOS magnetic field setup. For E total ≥ 3.0 × 1011 erg cm−2 models, the velocity and magnetic field deviations are most strongly correlated with the energy flux carried by ∼50 keV electrons, and the continuum enhancement is correlated with the synthesized ∼55–60 keV hard X-ray photon flux. The relatively low magnitudes of perturbations of the observables and absence of magnetic field sign reversals suggest that the considered RADYN beam heating models augmented with the uniform vertical magnetic field setups cannot explain the strong transient changes found in the SDO/HMI observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.