Abstract

Highland barley (Hordeum vulgare L. var. nudum) is a grain crop that grows on the plateau under poor and high salt conditions. Therefore, to cultivate high-quality highland barley varieties, it is necessary to study the molecular mechanism of strong resistance in highland barley, which has not been clearly explained. In this study, a high concentration of NaCl (240 mmol/L), simulating the unfavorable environment, was used to spray the treated highland barley seeds. Transcriptomic analysis revealed that the expression of more than 8,000 genes in highland barley seed cells was significantly altered, suggesting that the metabolic landscape of the cells was deeply changed under salt stress. Through the KEGG analysis, the phenylpropane metabolic pathway was significantly up-regulated under salt stress, resulting in the accumulation of polyphenols, flavonoids, and lignin, the metabolites for improving the stress resistance of highland barley seed cells, being increased 2.71, 1.22, and 1.17 times, respectively. This study discovered that the phenylpropane metabolic pathway was a significant step forward in understanding the stress resistance of highland barley, and provided new insights into the roles of molecular mechanisms in plant defense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.