Abstract

Transplanting rice appears to pose many problems, including depletion of freshwater reservoirs and competition for labor. Conversely, direct seeding allows us to overcome shortcomings associated with conventional transplanting. Nitrogen is a crucial nutrient needed for plant growth and yield. Therefore, this study was executed to analyze the influence of nitrogen on the performance of rice genotypes grown by direct seeding in wet soil. The experiment comprised various rice cultivars, i.e., Shalimar Rice-1, Shalimar Rice-3, Shalimar Rice-4, and Jhelum, and nitrogen (N) levels, i.e., 0, 90, 120, and 150 kg/ha. Shalimar Rice-4 produced a maximum grain yield (6.39 t/ha), followed by Shalimar Rice-3 and Jhelum). The application of 150 kg N/ha showed maximum values for growth parameters, yield attributing traits, and grain yield (6.68 t/ha); however, it remained at par with 120 kg N/ha. Crop water productivity was highest in Shalimar Rice-4 (0.49 kg/m3), and the same showed a consistent increase with increasing N levels from 0–150 kg/ha, with a comparable value of 0.49 to 0.51 recorded at 120 and 150 kg N/ha. Moreover, the Shalimar Rice-1 variety required the maximum in growing degree days (GDD) and helio-thermal units (HTU) to attain different phenological stages till physiological maturity (131 days). However, the cultivar Shalimar rice-4 (SR-4) performed better by registering significantly higher heat use efficiency (HUE) (4.44 kg/ha °C/day). Additionally, the highest net return and the benefit-cost ratio were registered by Shalimar Rice-4. B:C ratio of 1.75 was realized from application of 150 kg N/ha, which remained very close to that achieved with 120 kg N/ha. In conclusion, the rice cultivar Shalimar Rice-4 with the application of 120 kg N/ha could boost rice production under DSR in water-scarce regions of temperate northern India.

Highlights

  • Taller plants (122.15 cm) were recorded in Shalimar rice-4 (SR-4), followed by Shalimar rice-3 (SR-3) (115.2 cm), which remained at par with other varieties

  • Sterility was highest in SR-1 compared to other cultivars (Table 1)

  • Our investigation indicated that the overall performance of rice under wet direct seeding measured in terms of yield and economics was significantly influenced by cultivars and variable nitrogen rates

Read more

Summary

Introduction

Rice (Oryza sativa L.) is the staple food crop for more than half of the world population, including Africa, Central America, South America, the southern United States, Australia, Sustainability 2022, 14, 638. Both the availability of labor and freshwater rice will face a tough challenge on account of the growing industrial sector and escalating labor wages. This twin problem of increased water requirement, which is expected to increase by 55% by 2050 globally [5], and the decreasing labor share in agriculture, which is declining at the rate of 0.2% per year in

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call