Abstract

Results are presented of an experimental program undertaken to investigate the effects of strain rate on the behavior of reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) laminates. Nine 3-m RC concrete beams, one unstrengthened, four strengthened with S-type CFRP laminates, and four strengthened with R-type laminates, were loaded under four different loading schedules. The stroke rates ranged from 0.0167 mm/s (slow rate of loading) to 36 mm/s (fast rate of loading). This induced a strain rate in the CFRP of 2.96 με/s (slow rate) to 6,930 με/s (fast rate). Some beams were subjected to either 1 or 12 cycles of loading prior to a fast rate of loading to failure. The rapidly loaded beams showed an increase of approximately 5% in capacity, stiffness, and energy absorption. Ductility and the mode of failure were not directly affected by the change in loading rate. Precycled beams performed similarly to the beams loaded monotonically to failure but showed a 10% increase in service stiffness and a 10% loss in energy absorption. A finite-element, layered analysis is presented to predict the moment-curvature response of CFRP strengthened RC beams. The model includes the effects of strain rate and correlates well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.