Abstract

Acid mine water (AMD) is a global environmental problem caused by coal mining with the characteristics of low pH and high concentrations of metals and sulfates. It is a pertinent topic to seek both economical and environmentally friendly approaches to minimize the harmful effects of AMD on the environment. Insect larvae are considered a promising solution for pollution treatment. Chironomidae is the most tolerant family to contaminants in pools and its larvae have a strong capacity for metal accumulation from sediment. This paper aimed to evaluate the larvae of Propsilocerus akamusi, a dominant species in the chironomid community, as a new species for entomoremediation in AMD-polluted areas. We detected the toxic effects of AMD on P. akamusi larvae based on their survival and the trace metals bioaccumulation capabilities of P. akamusi larvae. Moreover, we analyzed the expression patterns of four stress-response genes, HSP70, Eno1, HbV, and Hb VII in P. akamusi larvae. Our results revealed that AMD exposure did not significantly affect the survival of the P. akamusi larvae and individuals exposed to some AMD gradients even exhibited higher survival. We also observed the significantly accumulated concentrations of Fe, Ni, and Zn as well as higher bioaccumulation factors (BAFs) for Ni and Zn in the P. akamusi larvae exposure to AMD. Induced expression of Eno1 and Hb VII may play important roles in the AMD tolerance of P. akamusi larvae. This study indicated the potential application of P. akamusi larvae in the metal bioremediation of AMD-polluted areas. Statement of environmental implicationAcid mine drainage (AMD) is a global environmental problem related to coal mining activities. AMD pollution has become a long-term, worldwide issue for its interactive and complex stress factors. Bioremediation is an effective method to remove the metals of AMD from wastewater to prevent downstream pollution. However, the disadvantages of the slow growth rate, susceptibility to seasonal changes, difficult post-harvest management, and small biomass of hyperaccumulating plants greatly limit the usefulness of phytoremediation. Insect larvae may be useful candidate organisms to overcome these shortcomings and have been considered a promising pollution solution. Propsilocerus akamusi is a dominant species in the chironomid community and is distributed widely in many lakes of eastern Asia. This species has extraordinary abilities to resist various stresses. This research is the first time to our knowledge to evaluate the application of P. akamusi as a new species in entomoremediation in AMD-contaminated areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.