Abstract

Herbivory and resource availability interactively regulate plant growth, biomass allocation, and production. However, the compensatory growth of plants under grazing intensities and manipulated environmental conditions is not well understood. A 2-year experiment with water (unirrigated and irrigated) and nitrogen fertilizer (0 and 75kgNha−1year−1) addition was conducted at sites with 4 grazing intensities (0–7 sheepha−1) in an annually rotational grazing system in Inner Mongolia. In this study, grazing had no significant effect on aboveground net primary production (ANPP) and net primary production (NPP). However, high grazing intensity strongly reduced the fraction of belowground net primary production to NPP. Water and nitrogen additions significantly increased ANPP by 39% and by 23%, respectively, but had no effect on belowground net primary production. ANPP showed lower response to nitrogen addition at high grazing intensity sites than at low grazing intensity sites. We found no evidence for grazing optimization on primary production of semiarid steppe, regardless of resource supplementations. Grazed plants minimized the reduction of ANPP by altering allocation priority and morphological traits. Our study highlights the “whole-plant” perspective when studying plant–herbivore interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.