Abstract

This paper reports on a cyclic nanoindentation approach of a pre-crystallized zirconia-reinforced lithium silicate glass ceramic (ZLS) to understand its material behavior associated with its machinability in dental CAD/CAM diamond abrasive milling. The material response to the cyclic nanoindentation using a Berkovich diamond tip was quantitatively determined in terms of the indentation contact hardness, elastic modulus, elasticity and plasticity for each loading cycle at peak loads of 2.5–10 mN. The cyclic load-displacement curves at different load levels indicate discrete discontinuities and hysteresis loops, which might have arisen from viscoelasticity behavior. Material properties degraded with an increasing number of loading cycles due to the mechanical softening which may facilitate machining in dental CAD/CAM milling. Elastic and plastic displacements and indentation energies revealed the pre-crystallized ZLS experiences predominantly elastic deformation and thus has a high capacity to retain its structure and shape. Furthermore, elastic energy dominated cyclic loading led to pseudoelasticity due to plastic strain accumulation. In situ scanning probe microscopy (SPM) images of cyclic indentation imprints reveal the fracture-free plastic deformation of the pre-crystallized ZLS under cyclic nanoindentation conditions. The outcomes of this study provide the mechanics model of diamond milling of the pre-crystallized ZLS due to the cyclic loading nature of dental CAD/CAM abrasive processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.