Abstract

Understanding the effects of climate change, in particular, climate extremes on plant functional traits can provide a mechanistic basis for predicting how plant communities may be altered in the future. Here, we focused on a dominant species in Inner-Mongolia typical temperate steppe, Leymus chinensis (Trin.) Tzvei, to examine the responses of plant functional traits to experimentally imposed extreme drought at three sites along an aridity gradient. When comparing the driest (high aridity) to the wettest sites (low aridity), plant height, leaf dry matter content and δ13C (water use efficiency) were increased at the intermediate and low aridity sites, whereas specific leaf area and leaf nitrogen content were reduced at the high-aridity site. When extreme drought (~ 66% reduction in the growing season precipitation) was experimentally imposed at all sites, plant height decreased and δ13C of L. chinensis increased at the intermediate and low aridity sites. The extreme drought of 66% precipitation reduction also increased leaf dry matter content in high- and low-aridity sites. Compared to the control (ambient precipitation), extreme drought increased the strength of the positive association between plant height and δ13C, as well as the negative associations of specific leaf area with plant height and leaf dry matter content. Thus, extreme drought altered key functional traits of the dominant grass of Inner Mongolia steppe, particularly at the low-aridity site where the drought decreased plant size and increased water use efficiency and affected relationships between these traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call