Abstract

We have measured the responses of four commercial photodiodes in the vacuum ultraviolet from 20 to 600 eV and have also measured the inelastic-electron-scattering spectra of the materials contained in the diodes from 0 to 260 eV. Three of the diodes are silicon: an enhanced channel device, an x-ray-stabilized silicon diode, and a p-i-n diode. The fourth is a gallium arsenide phosphide Schottky diode. The diode response has been modeled by considering absorption through the surface layer and inelastic surface recombination. The model produces an excellent description of the measured responses. From our analysis we have obtained reasonable values for the number of electrons produced per eV of incident radiation, the thicknesses of the surface layers, the surface recombination velocities, and the average diffusion lengths of the minority carriers. The highest efficiency is obtained for a silicon x-ray-stabilized diode followed by the gallium arsenide phosphide diode. We find that both of these diodes make excellent, stable soft-x-ray detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.