Abstract
Microstructure and mechanical properties of 9Cr-W-0.06Ta Reduced Activation Ferritic-Martensitic (RAFM) steels having various tungsten contents ranging from 1 to 2 wt pct have been investigated on subjecting the steels to isothermal heat treatments for 5 minutes at temperatures ranging from 973 K to 1473 K (700 °C to 1200 °C) (below Ac1 to above Ac3) followed by oil quenching and tempering at 1033 K (760 °C) for 60 minutes. The steels possessed tempered martensite structure at all the heat-treated conditions. Prior-austenitic grain size of the steels was found to decrease on heating in the intercritical temperature range (between Ac1 and Ac3) and at temperatures just above the Ac3 followed by increase at higher heating temperatures. All the steels suffered significant reduction in hardness, tensile, and creep strength on heating in the intercritical temperature range, and the reduction was less for steel having higher tungsten content. Strength of the steels increased on heating above Ac3 and was higher for higher tungsten content. Transmission Electron Microscopy (TEM) investigations of the steels revealed coarsening of martensitic substructure and precipitates on heating in the intercritical temperature range, and the coarsening was relatively less for higher tungsten content steel, resulting in less reduction in tensile and creep strength on intercritical heating. Tensile and creep strengths of the steels at different microstructural conditions have been rationalized based on the estimated inter-barrier spacing to dislocation motion. The study revealed the uniqueness of inter-barrier spacing to dislocation motion in determining the strength of tempered martensitic steels subjected to different heat treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.