Abstract

The diversity of surface-flux perturbations, especially for heat-flux perturbations, notably leads to uncertainties surrounding the responses of ocean climate under global warming scenarios projected by climate/Earth system models. However, when imposing heat-flux perturbations on the models, strong feedback persists between the atmosphere and the ocean, resulting in nearly doubled heat-flux perturbation over the North Atlantic (NA). Herein, quantitative evaluation of the influences of magnitude change of heat-flux perturbations over the NA on the changes in the Atlantic Meridional Overturning Circulation (AMOC), ocean heat uptake (OHU) and dynamic sea level (DSL) has been conducted by analysis of eight coupled model responses to the heat-flux perturbation experiments in the Flux-Anomaly-Forced Model Inter-comparison Project. It has been demonstrated that the magnitude of the AMOC change is extremely sensitive to the magnitude change of imposed NA heat-flux perturbation, and the weakening amplitude of the AMOC is nearly halved as the imposed heat-flux perturbation F is halved over the NA. The most remarkable responses of both DSL and OHU to the magnitude changes of NA heat-flux perturbation have been primarily found in the Atlantic and Arctic basins, especially for the NA region. Both the added ocean heat uptake (OHUa) and redistributed ocean heat uptake (OHUr) play key roles in OHU changes among the various NA heat-flux perturbation experiments. The magnitude change of NA-mean OHUa is almost linearly related to the imposed NA heat-flux perturbation, while the magnitude change of NA-mean OHUr, which is primarily caused by AMOC change and redistributed heat flux, is not proportional to the imposed NA heat-flux perturbation. There is a nearly linear relationship between the magnitude of AMOC change and the OHUr in tropical regions, including the regions in the low-latitude South Atlantic, the tropical Pacific Ocean and the Indian Ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.