Abstract

Changes in surface loads during glacial‐interglacial cycles and the associated flexure and rebound of the lithosphere alter the stress field in actively extending regions and may lead to slip rate variations on normal faults. In particular, loading may cause a period of seismic quiescence that is followed by temporal clustering of earthquakes during and after unloading. Here we present a suite of finite element experiments to evaluate how the magnitude, distribution, and temporal evolution of the load, as well as rheological parameters of the lithosphere and asthenosphere, influence the response of a normal fault. The results show that the duration of the seismically quiet period during loading and the intensity of the slip rate increase during unloading are primarily controlled by the magnitude of the load. The time lag between the changes in loading and the reaction of the fault is mainly determined by the viscosity of the asthenosphere. Parameters that play only a minor role for the fault's response include the rate of load removal, fault strength, and the thickness of the lithosphere. Our results imply that earthquake recurrence models derived from Holocene slip histories may not be representative for the long‐term evolution of seismogenic faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.