Abstract
Purpose In recent years, a growing number of studies have focused on the mechanisms of action of densely ionizing radiation. This is associated with the development of radiation therapy of tumors using accelerated ions. The use of densely ionizing radiation appears to be the most promising method, optimal for treating patients with severe radioresistant forms, such as widespread head and neck tumors, recurrent and metastatic tumors, and some forms of brain tumors. The goal of our study was to investigate the effects of gamma-neutron radiation on mouse neural stem/progenitor cells (NSCs/NPCs). Methods NSCs/NPCs were isolated from neonatal mouse brains. Cells were irradiated in a collimated beam of neutrons and gamma rays of the IR-8 nuclear reactor. At 5 and 7 days after irradiation, cells and neurospheres were counted to assess survival. The number of DNA double-strand breaks and their repair efficiency were determined by immunocytochemical γH2AX staining followed by counting the number of γH2AX foci using a fluorescent microscope. Results We observed a dose-dependent decrease in the survival of NSCs/NPCs after irradiation at doses above 100 mGy and stimulation of the proliferation of these cells at doses of 25 and 50 mGy. In terms of a decrease in cell survival, the effect of gamma-neutron irradiation significantly exceeded the effect of gamma irradiation: the maximum value of the relative biological efficiency for gamma-neutron irradiation comprised 9.7. Gamma-neutron irradiation led to the formation of double-strand DNA breaks detected by the formation of foci of histone γH2AX in the cell nuclei. The γH2AX foci formed after gamma-neutron irradiation of NSCs/NPCs at doses of 100–500 mGy were characterized by a larger size in comparison with foci induced by gamma irradiation and gamma-neutron irradiation at a dose of 50 mGy. The repair of double-strand DNA breaks induced by γ,n-irradiation was slow; the repair rate depended on the radiation dose. Conclusions The data obtained indicate high sensitivity of proliferating NSCs/NPCs to gamma-neutron radiation. High RBE of gamma-neutron radiation requires special measures to protect the neurogenic regions of the brain when using this type of radiation in radiation therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.