Abstract

The cosmic-ray mu-meson intensities at three different altitudes at the equator were measured as a function of zenith and azimuth angles by means of a portable scintillation counter telescope of semi-opening angles 23°. The data were analyzed to assess the effects of differences in pi- and mu-meson decay rates on the intensity of the penetrating ionizing component at different zenith angles. It was found that the changes of intensity as a function of zenith angles could be attributed almost entirely to differences in atmospheric absorption, provided that at all zenith angles the threshold rigidities were the same. Hence the intensities measured at different zenith angles in the east–west plane at the equator could be corrected to remove the atmospheric effects and the corrected data used for determining the response of meson detectors at sea level to particles of rigidity up to 25 GV. The response curve thus obtained is presented and compared with that obtained from sea-level latitude surveys by means of ionization chambers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call