Abstract

A model has been developed for the response of a rigid-porous hard-backed medium containing an arbitrary number of layers to high amplitude sound. Nonlinearity is introduced by means of a velocity-dependent flow resistivity in Johnson’s equivalent fluid model for the complex tortuosity of each layer. Numerical solution of the resulting system of algebraic equations allows prediction of the dependence of surface impedance and reflection coefficient on the incident pressure amplitude. Measurements have been made of the surface impedance of various triple layers, made from different diameters of spherical lead shot and double layers consisting of gravel with different mean particle size, subject to high-intensity continuous sound. Good agreement between the model predictions and data for these multiple-granular layers is demonstrated. Moreover it is shown both theoretically and experimentally that the layer configuration giving optimum performance at low sound intensities may not continue to do so as the incident sound level is increased and the response becomes increasingly nonlinear. It is shown also that the nonlinear behavior depends strongly on layering and that, in some cases, the behavior is changed simply by changing the top layer thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call