Abstract

Nanoplastics (NPs) and heavy metals are typical marine pollutants, affecting the gut microbiota composition and molting rate of marine organisms. Currently, there is a lack of research on the toxicological effects of combined exposure to horseshoe crabs. In this study, we investigated the effects of NPs and copper on the expression of molt-related genes and gut microbiome in juvenile tri-spine horseshoe crabs Tachypleus tridentatus by exposing them to NPs (100 nm, 104 particles L−1) and/or Cu2+ (10 μgL−1) in seawater for 21 days. Compared with the control group, the relative mRNA expression of ecdysone receptor (EcR), retinoid x receptor (RXR), calmodulin-A-like isoform X1 (CaM X1), and heat shock 70 kDa protein (Hsp70) were significantly increased under the combined stress of NPs and Cu2+. There were no significant differences in the diversity and abundance indices of the gut microbial population of horseshoe crabs between the NPs and/or Cu2+ groups and the control group. According to linear discriminant analysis, Oleobacillus was the most abundant microorganism in the NPs and Cu2+ stress groups. These results indicate that exposure to either NPs stress alone or combined NPs and Cu2+ stress can promote the expression levels of juvenile molting genes. NPs exposure has a greater impact on the gut microbial community structure of juvenile horseshoe crabs compared to Cu2+ exposure. This study is helpful for predicting the growth and development of horseshoe crabs under complex environmental pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call