Abstract

Graphene oxide (GO) can be potentially used in biomedical and nonbiomedical products. The in vivo studies have demonstrated that GO is predominantly deposited in the lung. In the present study, we employed SOLiD sequencing technique to investigate the molecular control of in vitro GO toxicity in GLC-82 pulmonary adenocarcinoma cells by microRNAs (miRNAs), a large class of short noncoding RNAs acting to post-transcriptionally inhibit gene expression. In GLC-82 cells, GO exposure at concentrations more than 50 mg/L resulted in severe reduction in cell viability, induction of lactate dehydrogenase leakage, reactive oxygen species production and apoptosis, and dysregulation of cell cycle. GO was localized in cytosol, mitochondria, endoplasmic reticulum, and nucleus of cells. Based on SOLiD sequencing, we identified 628 up-regulated and 25 down-regulated miRNAs in GO-exposed GLC-82 cells. Expression of some selected dysregulated miRNAs was concentration-dependent in GO-exposed GLC-82 cells. The dysregulated miRNAs and their predicted targeted genes were involved in many biological processes. By combining both information on targeted genes for dysregulated miRNAs and known signaling pathways for apoptosis control, we hypothesize that the dysregulated miRNAs could activate both a death receptor pathway by influencing functions of tumor necrosis factor α receptor and caspase-3 and a mitochondrial pathway by affecting functions of p53 and Bcl-2 in GO-exposed GLC-82 cells. Our results provide an important molecular basis at the miRNA level for explaining in vitro GO toxicity. Our data will be also useful for developing new strategies to reduce GO toxicity such as surface chemical modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call