Abstract

We analyzed the effect of natural solar insolation and artificial photoperiodic conditions on melatonin MT1 receptor expression of a tropical rodent, Funambulus pennanti. Melatonin mediates reproductive and circadian responses and regulates the production of a large number of cytokines, including interleukin-2 (IL-2), via modulation of MT1 receptor expression. Maximum pineal activity, resulting in high melatonin level, low melatonin receptor expression, and increased splenic mass, was noted in the winter months, while an opposite effect was noted during the summer months. Further, constant light exposure mimicked an “enhanced summer”-like condition with significant hyposplenia, and an opposite effect was observed with constant dark exposure with significant splenomegaly in F. pennanti. In the annual study, a slight increase in melatonin level was noted during the monsoon period, when the duration of photoperiod was the same but the amount of solar insolation and direct radiation decreased. The present study found that not only the duration of natural sunlight (i.e., photoperiod) but the intensity of sunlight expressed by solar insolation affects the circulatory level of melatonin and melatonin receptor expression in this wild tropical rodent. An increase in the circulatory level of melatonin induced a decrease in its receptor subtype MT1 expression in splenic cells, both at the transcriptional and translational levels, thus reflecting autoregulatory down-regulation of melatonin receptors. Therefore, in our animal model, F. pennanti melatonin may be suggested as a molecular messenger of photoperiodic signals (duration and intensity) directly acting via MT1 receptor regulation to adapt the immune system of animals residing in the tropical zone. (Author correspondence: chaldar2001@yahoo.com)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call