Abstract

The paper discusses changes in the low-flow regime of rivers in Poland, resulting from climate change that occurred between 1987 and 1989. The low-flow variability of rivers was measured with the use of the number of days with low flows (NDLF) below a threshold value, which was adopted as the 0.1 (10%) percentile (Q10) from the set of daily flows recorded in the multi-annual period 1951–2020 at 140 water gauges on 83 rivers. The analysis of the course of climate change over Poland showed that it was caused by macro-circulation conditions, controlled by changes in the intensity of thermohaline circulation in the North Atlantic (NA THC). Climate change consisted of a sharp increase in sunshine duration and air temperature, and a decrease in relative humidity after 1988. Along with the lack of changes in precipitation totals, characterized by a strong yearly variability, and an increase in field evaporation, it led to noticeable changes in the water balance. As a result, in 1989–2020, there was a significant increase in NDFL detected in about 2/3 of the area of Poland. With the change in the NA THC phase and the macro-circulation conditions, there was also a change in the spatial distribution of areas drained by rivers with increased NDFL. In 1951–1988, these included the eastern parts of Poland, while after the climate change (1989–2020), its western and south-western parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call