Abstract

Liquid scintillator detector assemblies contain an inert nitrogen expansion volume to allow for expansion of the liquid with changing temperature. Measurements and Geant4 Monte Carlo simulations are performed to study the dependence of pulse height distribution shapes as a function of detector angle for two liquid scintillators assemblies filled with 97% organic-liquid cocktail and a 3% expansion volume. A 12.7-cm diameter by 12.7-cm long and a 7.6-cm diameter by 9.1-cm long EJ-309 liquid scintillator assemblies are investigated using a 137Cs gamma-ray source. Aside from the differences in dimensions, the detector assemblies also differed in the design of the active detector volume: there is no light guide in the 12.7-cm-diameter detector assembly, whereas the 7.6-cm-diameter detector contains a BK7 light guide between the scintillation liquid and optical coupling to the photomultiplier tube. Results for the 12.7-cm-diameter detector show a decrease in the position of the Compton edge ranges from 4% to 40% at detector orientations where the expansion volume exists between scintillating medium and the photomultiplier tube. Results for the 7.6-cm-diameter detector show that the position of the Compton edge is relatively unaffected at all detector orientations due to the presence of light guide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.