Abstract

The present study was aimed at investigating the interactive effects of starvation and dietary lipid level in the previous feeding period on lipid-related composition of turbot. Turbot with an average initial body weight of 26 g were firstly fed diets with different lipid levels, namely, 8%, 12%, and 16%, for 9 weeks, and then subjected to starvation for 30 days. Each diet was fed to sextuplicate tanks of 35 fish in the feeding trial. Tissue samples were collected at the end of the feeding trial and at 10, 20, and 30 days after starvation. The results showed that 30-day starvation decreased the lipid content in the liver and the subcutaneous tissue around the fin (STF), but increased the lipid content in the muscle. A synergetic increase of muscle lipid by starvation and dietary lipid level was observed. Starvation mobilized different fatty acids among the three tissues, namely, MUFA (16:1n-7 and 18:1n-9) in the muscle, SFA (14:0 and 16:0), MUFA (16:1n-7, 18:1n-9 and 20:1n-9), and 18C-PUFA (18:2n-6 and 18:3n-3) in the liver, and unexpectedly n-3 PUFA (18:3n-3, EPA, and DHA) in the STF, respectively. The 30-day starvation decreased the muscle hardness and resilience, but affected other texture parameters in a starvation time-dependent manner. Up-regulation of expression of lipolytic genes by starvation occurred later in the STF than in the liver. Interactive effects of starvation and dietary lipid level were observed mainly on tissue fatty acid compositions. Results of this study suggested that combined manipulation of starvation time and dietary lipid level could be used as an effective means of fish quality regulation in terms of lipid/fatty acid-related composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call