Abstract
Changes in leaf area development, leaf N content, and stomatal conductance were examined in field‐grown soybean [Glycine max (L) Merr.] in response to soil water deficits imposed during vegetative growth after canopy closure. The consequences of these changes for biomass accumulation were assessed in terms of the amount of photosynthetically active radiation (PAR) intercepted by the crops and the efficiency of its use to accumulate biomass. Mild water deficits decreased leaf expansion more than leaf production, while leaf senescence was similar to that in the well‐watered control. However, the decrease in leaf area development was insufficient to have an impact on PAR interception, but biomass accumulation efficiency was decreased. The decrease in biomass accumulation efficiency was associated with lowered stomatal conductance, while specific leaf N content, a determinant of long‐term photosynthetic capacity, was relatively unaffected. In contrast, severe water deficits decreased both the amount of PAR intercepted and its efficiency of use in biomass accumulation. Accelerated leaf senescence was much more significant in decreasing PAR interception than the decrease in leaf expansion and production. Specific leaf N content actually increased under severe water deficits but, given the extremely low stomatal conductances, had no effect on crop biomass accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.