Abstract
We investigate the R3c average structure and micro-structure of the ceramic Bi0.5Na0.5TiO3 (BNT) in situ under applied electric fields using diffraction techniques. Electron diffraction implies the presence of significant octahedral tilt twin disorder, corresponding to the existence of a fine scale intergrown microstructural (IGMS) ‘phase’ within the R3c rhombohedral average structure matrix. A careful neutron refinement suggests not only that the off-centre displacements of the cations relative to the oxygens in the R3c regions increases systematically on application of an electric field but also that the phase fraction of the IGMS regions increases systematically. The latter change in phase fraction on application of the electric field enhances the polar displacement of the cations relative to the oxygen anions and affects the overall strain response. These IGMS regions form local polar nano regions that are not correlated with one another, resulting in polarisation relaxation and strain behaviour observed in BNT-containing materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.