Abstract

To investigate the responses of inclined loaded piles in layered foundations, this paper proposes a generalized solution based on the principle of minimum potential energy. First, the energy equations for an inclined loaded pile and the surrounding soil are deduced. With the consideration of deformation compatibility and the pile–soil interaction, the governing differential equation for the pile is obtained via a power series method based on the energy method. Subsequently, the power series solutions for the pile deformation under axial and lateral loads are obtained. The results indicate that the analytical solution proposed in this study can provide consistent predictions with experimental results. Furthermore, the ratio of the elastic modulus between the upper and the lower soil, the length–diameter ratio, and the change ratio of the elastic modulus of the adjacent soil have significant influence on the lateral displacement and the bending moment of the inclined loaded pile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.