Abstract

This paper presents three-dimensional direct numerical simulations of lean premixed H2/air flames with equivalence ratios 0.4, 0.5 and 0.6, respectively. The initial Karlovitz number is around 2335 and the pressure is 20 atm, which is relevant to gas turbine conditions. The heat release in reaction zones under different equivalence ratios is examined statistically with the aim to extend our understanding of lean combustion under high-pressure conditions. With increasing equivalence ratio, the relative thickness of reaction zone (δf/δL) is increasing for both laminar and turbulent flames, but the extent of increase is reduced under high equivalence ratio. By examining the local structures of flame fronts, it is found that trenches and plateaus of local equivalence ratio are located on separate sides of the reaction zone edge. Due to the decreased Lewis number under high equivalence ratio, the trench ‘depth’ and plateau ‘height’ are reduced. For the flame under ultra-lean conditions, there are some spots with temperatures above adiabatic temperature. This is attributed to the high-fraction of radicals in these regions, which will promote heat release. Furthermore, the heat release rates of elementary reactions are investigated with the analysis of radical fractions and rate constants. When the mixture equivalence ratio varies, the local heat release is changed in different temperature windows due to the combined effects of radical fractions and reaction rate constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.