Abstract

Nutrient enrichment is a widespread phenomenon affecting coastal waters, including salt marshes. As land-derived nitrogen loading in estuarine waters increases, chlorophyll concentrations in the water also increase. We hypothesized that such increases might increase growth of the food-limited population of Geukensia demissa, which is a dominant component of salt marshes. To test this, we conducted a regional scale experiment in three estuaries of Waquoit Bay, Massachusetts that receive different nitrogen loading rates. A stable isotope experiment on mussel tissues and on particulate organic matter (POM) showed that mussels within an estuary fed on POM characteristic of that estuary, demonstrating the direct linkage between POM and mussels within an estuary. In addition, we measured age-specific shell growth rates of mussel populations using two different methods: indirectly, shell growth of mussels indicated by internal shell-lines was measured by fitting the data to the von Bertalanffy equation, and directly, mussels were transplanted from one estuary to the other two, and their actual shell growth rates after 80 days were measured. Growth rates of mussels in the Waquoit Bay estuaries varied with age of the mussel, tidal elevation, and with mean concentration of chlorophyll in the water. Mussels grew best in the lower intertidal zone, at the marsh banks. Young mussels grew faster than older mussels. Growth rates increased in response to presumed greater food supply across the estuaries, only for younger mussels. The significant differences we found among the mussels from different estuaries indicate a response to higher concentrations of food particles available in estuaries subject to higher nitrogen loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call