Abstract

 To investigate the responses of growth and antioxidant enzymes to osmotic stress in two different wheat cultivars, one drought tolerant (Heshangtou, HST) and the other drought sensitive (Longchun 15, LC15), 15-day-old wheat seedlings were exposed to osmotic stress of –0.25, –0.50, and –0.75 MPa for 2 days. It is found that osmotic stress decreased shoot length in both wheat cultivars, whereas to a lesser degree in HST than in LC15. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of shoot in both wheat cultivars were increased by osmotic stress. It is clear that MDA contents increased less in the more drought tolerant cultivar HST than in drought sensitive one LC15. On the contrary, POD and CAT activities increased more in HST than LC15 under osmotic stress. As the activity of SOD, however, no significant differences were found between HST and LC15. These results suggest that wheat cultivar HST has higher activities of antioxidant enzymes such as POD and CAT to cope with oxidative damage caused by osmotic stress compared to sensitive LC15.  

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call