Abstract

The defense potential of a tolerant American <i>Vitis rupestris</i> cultivar (Rupestris du Lot) and a susceptible European <i>Vitis vinifera</i> cultivar (Chardonnay) in response to UV-C irradiation was investigated. The expression of eight defense-related genes coding for enzymes of the phenylpropanoid pathway (phenylalanine ammonia lyase and stilbene synthase), the octadecanoid pathway (lipoxygenase), and pathogenesis-related proteins (class I and III chitinases, ß-1,3-glucanase, class 6 pathogenesis-related protein, and class 10 pathogenesis-related protein) was followed by real-time reverse transcription polymerase chain reaction (RT-PCR). Phenolic compound accumulation was monitored by microscopic observation. Accumulation of resveratrol, a major grapevine phytoalexin, was evaluated by HPLC, and chitinase and ß-1,3-glucanase enzyme activities were measured. Both grapevine species responded to UV-C treatment by enhancement of defense mechanisms. Intensity of some defense responses was correlated with tolerance to diseases, as previously described for stilbene accumulation: the tolerant species responded more intensely to UV-C exposure than the susceptible one. UV-C irradiation is a practical and reproducible method for inducing grapevine defense responses and can be useful in determining the defense potential of grapevine cultivars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call