Abstract

Recent Global Burden of Disease (GBD) assessments estimated that outdoor fine-particulate matter (PM2.5) is a causal factor in over 5% of global premature deaths. PM2.5 is produced by a variety of direct and indirect, natural and anthropogenic processes that complicate PM2.5 management. This study develops a proof-of-concept method to quantify the effects on global premature mortality of changes to PM2.5 precursor emissions. Using the adjoint of the GEOS-Chem chemical transport model, we calculated sensitivities of global PM2.5-related premature mortality to emissions of precursor gases (SO2, NOx, NH3) and carbonaceous aerosols. We used a satellite-derived ground-level PM2.5 data set at approximately 10 × 10 km(2) resolution to better align the exposure with population density. We used exposure-response functions from the GBD project to relate mortality to exposure in the adjoint calculation. The response of global mortality to changes in local anthropogenic emissions varied spatially by several orders of magnitude. The largest reductions in mortality for a 1 kg km(-2) yr(-1) decrease in emissions were for ammonia and carbonaceous aerosols in Eastern Europe. The greatest reductions in mortality for a 10% decrease in emissions were found for secondary inorganic sources in East Asia. In general, a 10% decrease in SO2 emissions was the most effective source to control, but regional exceptions were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.