Abstract
In this study, a very thin film of biocompatible gelatin B (GB) fabricated onto indium tin oxide (ITO)-coated glass substrate for electrochemical catalytic activity towards different metabolites has been investigated. The optical and electrochemical properties of bare GB/ITO electrode and with different metabolites were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and electrochemical techniques. The optical properties clearly indicate the structural and surface morphological changes on electrode surface. FTIR spectra showed displacement of the IR peaks towards smaller wave numbers, indicating possible existence of hydrogen bonding between the GB and metabolites. The catalytic behaviour of GB/ITO electrode towards ascorbic acid (AA), citric acid (CA), oxalic acid (OA), glucose (Glu), sucrose (Suc), lactose (Lac) and fructose (Fru) has been investigated by cyclic voltammetry (CV). The electrochemical response studies of GB/ITO electrode have been monitored with different metabolites in the range of 10-500mg/dl. The sensitivity of GB/ITO electrode for AA and OA was found as 0.156 and 0.108μA/(mg/dlcm(-2)) respectively. The results indicate that the GB/ITO electrode has higher specificity towards the AA and OA. The attractive properties of GB/ITO electrode provide the potential applications in the simultaneous detection of AA and OA. The excellent electrocatalytic behaviour of GB/ITO electrode may be useful towards the construction of electrochemical biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.