Abstract

Fusarium oxysporum is a cross-kingdom pathogen that infects humans, animals, and plants. The primary concern regarding this genus revolves around its resistance profile to multiple classes of antifungals, particularly azoles. However, the resistance mechanism employed by Fusarium spp. is not fully understood, thus necessitating further studies to enhance our understanding and to guide future research towards identifying new drug targets. Here, we employed an untargeted proteomic approach to assess the differentially expressed proteins in a soil isolate of Fusarium oxysporum URM7401 cultivated in the presence of amphotericin B and fluconazole. In response to antifungals, URM7401 activated diverse interconnected pathways, such as proteins involved in oxidative stress response, proteolysis, and lipid metabolism. Efflux proteins, antioxidative enzymes and M35 metallopeptidase were highly expressed under amphotericin B exposure. Antioxidant proteins acting on toxic lipids, along with proteins involved in lipid metabolism, were expressed during fluconazole exposure. In summary, this work describes the protein profile of a resistant Fusarium oxysporum soil isolate exposed to medical antifungals, paving the way for further targeted research and discovering new drug targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call