Abstract

AbstractSince the 1990s, the Qinghai-Tibetan Plateau (QTP) has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground. A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground (SFG) has long been recognized. Still, a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated, despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future. This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5. Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones, with significant correlation coefficients of 0.60 and 0.48, respectively. Precipitation increased continually at the rate of 6.16 mm decade−1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer. However, diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG. The relationship between the ground thawing index and precipitation was significantly negatively correlated (−0.75). The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.