Abstract

Multimetric indices based on fish and benthic macroinvertebrate assemblages are commonly used to assess the biological integrity of aquatic ecosystems. However, their response to specific stressors is rarely known. We quantified the response of a fish-based index (Mid-Atlantic Highlands Index of Biotic Integrity, MAH-IBI) and a benthic invertebrate-based index (West Virginia Stream Condition Index, WV-SCI) to acid mine drainage (AMD)-related stressors in 46 stream sites within the Cheat River watershed, West Virginia. We also identified specific stressor concentrations at which biological impairment was always or never observed. Water chemistry was extremely variable among tributaries of the Cheat River, and the WV-SCI was highly responsive across a range of AMD stressor levels. Furthermore, impairment to macroinvertebrate communities was observed at relatively low stressor concentrations, especially when compared to state water quality standards. In contrast to the WV-SCI, we found that the MAH-IBI was significantly less responsive to local water quality conditions. Low fish diversity was observed in several streams that possessed relatively good water quality. This pattern was especially pronounced in highly degraded subwatersheds, suggesting that regional conditions may have a strong influence on fish assemblages in this system. Our results indicate that biomonitoring programs in mined watersheds should include both benthic invertebrates, which are consistent indicators of local conditions, and fishes, which may be indicators of regional conditions. In addition, remediation programs must address the full suite of chemical constituents in AMD and focus on improving linkages among streams within drainage networks to ensure recovery of invertebrate and fish assemblages. Future research should identify the precise chemical conditions necessary to maintain biological integrity in mined Appalachian watersheds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.