Abstract

Evapotranspiration (ET) is an essential part of energy flow between the surface of the earth and the atmosphere, simultaneously involving the water, carbon, and energy cycles. It is mainly determined by climate, land use, and land cover changes. Additionally, there is still a need for quantitative characterization of the impacts of climate factors and human activities on ET and regional water resource efficiency in arid and semiarid regions. Based on Landsat-8 remote sensing imagery and land use data, the crop planting structures in the Liangzhou District of the middle reaches of the Shiyang River Basin were identified using a multiband and multi-temporal approach in this study. Subsequently, the ET of major cash crops was inverted using the three-temperature model. This research quantitatively describes the responses of wheat and corn to the climate and human activities over a two-year period. Furthermore, the impact of crop planting structures and climatic factors on ET was elucidated. The results indicate that a combination of multi-temporal green and shortwave infrared 1 bands is the optimal spectral combination to extract the planting structures. Compared to 2019, the wheat area decreased by 23.27% in 2020, while the corn area increased by 5.96%. Both crops exhibited significant spatial heterogeneity in ET during the growing season. The typical daily range of ET for wheat was 0.4–7.2 mm/day, and for corn, it was 1.5–4.0 mm/day. Among the climatic factors, temperature showed the highest correlation with ET (R = 0.80, p ≤ 0.05). Our research findings provide valuable insights for the fine identification of crop planting structures and a better understanding of the response of ET to climatic factors and planting structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call