Abstract

Contaminated groundwater migrates in reverse direction under capillary force in vadose zone, and the attenuation process of pollutant adsorption and microbial degradation changes the environment of vadose zone. In this study, the response of toluene to environmental factors during reverse migration and attenuation of toluene from aquifer to vadose zone was studied by column experiment and experimental data analysis. The changes of environmental factors, including potential of hydrogen (pH), dissolved oxygen (DO), and oxidation-reduction potential (ORP), and toluene concentration were monitored by soil column experiment under sterilized and non-sterilized conditions. The 16S rRNA molecular biological detection technology was used to quantitatively analyze the impact of microbial degradation on the environment. Finally, the correlation between environmental factors and concentration in the attenuation process of toluene in the vadose zone was quantitatively studied by Pearson Correlation Coefficient (PCC) and multivariate statistical equation. The results showed that pH was primarily affected by microbial degradation, and DO and ORP were primarily affected by both adsorption and microbial degradation. The attenuation of toluene was divided into two stages: adsorption dominated (0~26 d) and microbial degradation dominated (26~55 d). The degradation amounts of microorganisms at each position in the non-sterilized column from bottom to top were 9.37%, 55.34%, 68.64%, 75.70%, 66.03% and 42.50%. At the same time, the article proposes for the first time that there is an obvious functional relationship between environmental factors (DO, ORP, pH), time (t) and concentration (CToluene):CToluene=C0+A100t+Bα+Cβ+D100γ, (α,β,γ are the pH, DO and ORP of capillary water, respectively; A, B, C and D are all undetermined coefficients), R2 > 0.95. The results of this study may facilitate the use of simple and easy-to-obtain environmental factors to characterize the dynamic process of pollutant concentration changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call