Abstract

The response of energy envelop in complex nonlinear oscillator networks to stochastic excitations is studied. First, by using the stochastic averaging method for quasi-nonintegrable-Hamiltonian systems, the averaged Fokker–Planck–Kolmogorov equation governing the probability density of the Hamiltonian is established. Then, the stationary probability density of the Hamiltonian is derived, and the stationary probability density of the averaged energy as well as the statistical moments of the Hamiltonian is obtained. To that end, an illustrative example is provided with the analytical relationship between the response and the network parameters as well as the network structure. Specific solutions are presented for five representative topological structures. Throughout extensive simulations, the effects of system parameters, such as the network size, coupling strength and intensities of stochastic excitations on the response of the energy envelop of the networks, are carefully observed and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.