Abstract

The electrochemical activity of bioelectrochemical systems (BESs) was proven to be dependent on the stability of electroactive biofilms (EABs), but the response of EABs based on real wastewater to external disturbances is not fully known. Herein, we used real wastewater (beer brewery wastewater) as a substrate for culturing EABs and found that current generation, biomass, redox activity and extracellular polymeric substances (EPS) content in those EABs were lower as compared to EABs cultured with synthetic wastewaters (acetate and glucose). However, the EABs from the beer brewery wastewater showed moderate anti-shock resistance capability. The proteins and humic acid in loosely bound EPS (LB-EPS) exhibited a positive linear relationship with current recovery after Ag+ shock, indicating the importance of LB-EPS for protecting the EABs. Fluorescence and Fourier transform infrared spectroscopy integrated with two-dimensional correlation spectroscopy verified that the spectra of the protein-like region of LB-EPS changed considerably under the interference of Ag+ concentration and the CO group of humic acid or proteins was mainly responsible for binding with Ag+ to attenuate its toxicity to the EABs. This is the first study revealing the underlying molecular mechanism of EABs cultured with real wastewater against external heavy metal shock and provides useful insights into enhancing the application of BESs in future water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call