Abstract
Ecosystem services value (ESV) has been one index of quantitative evaluation for the ecological livability of heavy industry cities in the new era, which is intimately relevant to patterns of spatio-temporal changes in land use. This study aims to reveal the response of ecosystem service value in heavy industrial cities to the spatial-temporal evolution structure of land use and to analyze the cold and hot spots and sensitivity. In this study, Taiyuan was taken as an example, and Landsat images were adopted as the basic data. This study used intensity analysis, revised ESV, fishing nets, sensitivity analysis, and the methods of hotspot analysis and spatial overlay. The results showed as follows, (1) The characteristics of land use structure evolution mainly focus on the increase of construction land in the early and the rapid development stage of heavy industry cities. All land use types were partly transferred to construction land, but farmland was the main source, with the largest change intensity in the rapid development stage in Taiyuan; (2) The low-value zones of ESV were mostly distributed in the main urban area for construction and farmland, while the high-value zones were primarily distributed in the forestland and grassland. They were distributed in the Fenhe River valley, western and northern mountainous and hilly areas of Taiyuan. The total ESV continued to decline from 2003 to 2018, with a loss amount of RMB 29 million; (3) The patches of land use change were more and more broken, and the spatial distribution of the cold and hot spots was more and more dispersed. The cold and hot spots of ESV were concentrated in the eastern main urban area and its surrounding areas and expanded to the north and south; (4) The forestland was the most sensitive land factor of ESV. The study provides a theoretical method for land use planning, environmental governance, and ecological restoration in heavy industry cities in the new era.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.