Abstract

The Younger Dryas (YD) event, recognized as one of the most typical abrupt climate changes on the millennial time scale, results in striking cooling in most regions of the North Atlantic. The most acceptable hypothesis believes that this event is related to a large volume of meltwater fluxes injected into the North Atlantic. In remote Asia, various paleoclimate reconstructions have revealed that the East Asian summer monsoon (EASM) is significantly depressed during the cold YD episode. However, the effect of North Atlantic meltwater-induced cooling on the whole downstream Eurasian regions and its potential dynamics remains been not fully explored till now. In this study, the responses of Asian climate characteristics during the YD episode, especially the EASM, are evaluated based on modeling data from the Simulation of the Transient Climate of the Last 21,000 years (TraCE 21ka). The results show that the cooling signal during the YD, which is mainly caused by meltwater flux, spreads from the North Atlantic to the whole Eurasia. In agreement with the paleoclimatic proxies, the simulated EASM is obviously weakened. The summer precipitation is also suppressed over East, South, and Central Asia. Dynamically, the North Atlantic cooling produces an eastward propagated wave train across the mid-latitude Eurasia, which facilitates weaker EASM circulation. The weakened land-sea thermal contrast over East Asia also contributes to the monsoon decrease during YD cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.