Abstract

In order to investigate the response of dynamic structure to removal of a disulfide bond, the dynamic structure of human lysozyme has been compared to its C77A/C95A mutant. The dynamic structures of the wild type and mutant are determined by normal mode refinement of 1.5-A-resolution X-ray data. The C77A/C95A mutant shows an increase in apparent fluctuations at most residues. However, most of the change originates from an increase in the external fluctuations, reflecting the effect of the mutation on the quality of crystals. The effects of disulfide bond removal on the internal fluctuations are almost exclusively limited to the mutation site at residue 77. No significant change in the correlation of the internal fluctuations is found in either the overall or local dynamics. This indicates that the disulfide bond does not have any substantial role to play in the dynamic structure. A comparison of the wild-type and mutant coordinates suggests that the disulfide bond does not prevent the 2 domains from parting from each other. Instead, the structural changes are characteristic of a cavity-creating mutation, where atoms surrounding the mutation site move cooperatively toward the space created by the smaller alanine side chain. Although this produces tighter packing, more than half of the cavity volume remains unoccupied, thus destabilizing the native state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.