Abstract

In this paper, the effect of footing shape resting on dry sand when subjected to machine dynamic loading is experimentally investigated. A laboratory set-up was prepared to simulate the case at different operating frequencies. Nine models were tested to examine the effects of the combinations of two parameters, including different frequencies of (0.5, 1, and 2 Hz) and different footing shapes (circular, square and rectangular). The tests were conducted under a load amplitude of (0.25 ton) using sand with medium and dense relative densities corresponding to (R.D. = 50% and 80%) having unit weights of (17.04 and 17.96 kN/m3) respectively. A shaft encoder and a vibration meter were used to measure the strain and amplitude displacement, while the stress in the soil at different depths was measured using flexible pressure sensors. It was found that the shape of footing has a considerable influence on the bearing capacity of the supporting soil under dynamic loading. For instance, the strain of dry sand under a circular footing was nearly (41%) higher, the amplitude displacement was nearly (17%) higher, and stress was nearly (12%) higher than square and rectangular footings, under the same conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.