Abstract

A field experiment was conducted during the of 2023-24 at the Research Farm, Department of Soil Science and Agricultural Chemistry, Naini Agriculture Institute, Sam Higginbottom University of Agriculture Technology and Sciences, to investigate the Response of different levels of Nitrogen and Foliar application of nano zinc on Soil Health and Yield of Wheat (Triticum aestivum L.). We designed the experiment using a Randomized Block Design (RBD) with 10 treatments and three replications. Results indicated that the application of nano fertilizers significantly influenced various soil physico chemical properties. Bulk density was 1.27Mg m⁻³ to 1.31 Mg m⁻³ at 0-15 cm soil depth, and 1.29 to 1.32 Mg m⁻³ at 0-15 and 15-30 cm soil depth. Particle density was 2.65 to 2.67 Mg m⁻³ at 0-15 cm depth, and from 2.60 to 2.62 Mg m⁻³ at 15-30 cm depth. Pore space was 47.09% to 48.99% at 0-15 cm depth and 47.09% and 48.84% at 0-15 and 15-30 cm depth. Water holding capacity varied between 45.22% and 46.64% at 0-15 cm depth, and 45.14% and 46.89% at 15-30 cm depth. Soil pH was 6.98 to 7.04 at 0-15 cm depth and from 7.00 to 7.05 at 15-30 cm depth. Electrical conductivity (EC) was 0.13 dS m⁻¹ to 0.19 dS m⁻¹ at 0-15 cm depth, and from 0.13 dS m⁻¹ to 0.19 dS m⁻¹ at 15-30 cm depth. Organic carbon content was 0.423%-0.493% at 0-15 cm depth and 0.261% to 0.334% at 15-30 cm depth. The use of NPK and nano zinc also significantly influenced the availability of available nitrogen, phosphorus, potassium, and zinc. These findings suggest that nano fertilizers can effectively enhance soil health and wheat productivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.