Abstract

Plant-microbe is a complementary coupling system for antibiotics removing in constructed wetlands (CWs), but how plant and rhizosphere microbiomes respond to antibiotics exposure and the occurrence of ARGs in this microenvironment have seldom been researched. Thus, the response of the plant-microbe coupling system to different levels of antibiotics (sulfamethoxazole (SMZ) and ofloxacin (OFL)) was investigated. The results showed that two antibiotic stressors have hormetic effects on plant growth, physiology, and microbial community evolution, and the antibiotic toxic effects presented as SMZ + OFL > SMZ > OFL. Antibiotic accumulation in the plants was in the order of roots > stems > leaves. Notably, the root attachments affected antibiotic transportation. The accumulation of antibiotics in the under-ground parts affected the rhizosphere microbial community structure, and the microorganisms were more sensitive to SMZ + OFL than the plants, with inflection points of 0.5 mg L−1 and 1 mg L−1, respectively. Pseudomonas was highly resistant to antibiotics, while Acidovorax and Devosia may play a role in antibiotic degradation. Correlation analysis and network analysis showed that antibiotic enrichment and the bacterial community contributed significantly to the abundance of antibiotic-resistant genes (ARGs), further revealing the co-occurrence of int1, ARGs, and the potential bacterial hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call