Abstract

Cyanobacterial mats (CBM), complex assemblages of cyanobacteria, bacteria and algae, are important ecosystem components of oligotrophic marshes in limestone-based regions of the Caribbean. We conducted a mesocosm experiment and evaluated the response of CBM to factorial combinations of low, medium and high phosphorus, nitrogen and salinity. Changes in composition of the main species groups of cyanobacteria and algae, primary production, cellular nutrients and enzymatic activities were recorded as response variables. The redundancy analysis with concentrations of P, N and salinity as explanatory variables showed that the primary production of CBM and the amount of phytoplankton expressed as Chl a were best explained by concentration of P, with less significant positive effect of N and a negative effect of salinity. Abundance of green algae and Chroococcales was positively correlated with increasing concentrations of P and N and reached 27.6% and 21.9%, respectively, in high P and high N treatment at the end of experiment. N 2-fixation averaged 75 and 175 nmol C 2H 4 cm −2 min −1, at low nitrogen and medium or high P, respectively, and it was negatively correlated with nitrogen concentration and positively correlated with abundance of a group of heterocytous cyanobacteria from genus Nostoc. At low N concentrations, increasing P concentrations supported higher N 2-fixation. Activity of the alkaline phosphatase, APA, was negatively correlated with P and salinity and positively with N. We also found a significant negative correlation between the APA activity and the P content of the mat. At high P and N concentrations, the mats were impacted by grazing, had a tendency to disintegrate and become shaded out by a massive growth of phytoplankton. We confirmed an overall negative effect of nutrient increase on CBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call