Abstract

Abstract Increasing plant density has been an effective way for cotton yield improvements. The density of plants in a community also determines competition intensity and the efficiency to exploit available resources. However, the competition response as well as optimal density for yields and the mechanisms of which in terms of fruit growth rate are poorly known. A field experiment was conducted on cotton (Gossypium hirsutum L. SCRC 28) at a wide range of plant densities from 1.5–10.5 plants m−2. The results indicated that intraspecific competition between cotton plants increased nonlinearly with increasing plant density. Seedcotton yield per unit ground area declined precipitously at plant densities below the 4.0 plants m−2 threshold and yield did not further increase above this threshold, which is interpreted as the minimum plant density at which yield should be maximized. Moreover, maximum fruit production and fruit growth rate were also recorded at the same density threshold, above which there was no significant response. Cotton yield was positively correlated with fruit production and fruit growth rate. We thus conclude that high fruit production and fruit growth rate are responsible for maximum yield under optimal plant density in cotton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.