Abstract
A new computational procedure based on improved higher order sandwich plate theory (IHSAPT) and two models representing contact behavior between the impactor and the panel are adopted to study the low velocity impact phenomenon of sandwich panels comprising of a transversely flexible core and laminated composite face-sheets. The interaction between the impactor and the panel is modeled with the help of a new system having three-degrees-of-freedom, consisting of spring–mass–damper–dashpot (SMDD) or spring–mass–damper (SMD). The effects of transverse flexibility of the core, and structural damping are considered. The present analysis yields analytic functions describing the history of contact force as well as the deflections of the impactor and the panel in the transverse direction. In order to determine all components of the displacements, stresses and strains in the face-sheets and the core, a numerical procedure based on improved higher order sandwich plate theory (IHSAPT) and Galerkin's method is employed for modeling the layered sandwich panel (without the impactor), while the analytic force function developed on the basis of SMDD or SMD model, can be used for the contact force between the impactor and the panel. The contact force is considered to be distributed uniformly over a contact patch whose size depends on the magnitude of the impact load as well as the elastic properties and geometry of the impactor. Various boundary conditions for the sandwich panel have also been considered. Finally, the numerical results of the analysis have been compared either with the available experimental results or with some theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.