Abstract

Considering the short life-cycle property, Caenorhabditis elegans is a suitable animal model to evaluate the long-term effects of microgravity stress on organisms. Canonical Wnt/β-catenin signaling is evolutionarily conserved in various organisms. We here investigated the response of canonical Wnt/β-catenin signaling pathway to microgravity stress in nematodes. We observed the noticeable response of canonical Wnt/β-catenin signaling to microgravity stress. In contrast, we did not detect the obvious response of non-canonical Wnt/β-catenin signaling to microgravity stress. The canonical β-catenin BAR-1 acted in the intestine to regulate the response to simulated microgravity. Moreover, in the intestine, we identified a signaling cascade of canonical Wnt/β-catenin signaling pathway in response to simulated microgravity, and this signaling cascade contained Frizzled receptor MIG-1, Disheveled protein DSH-2, GSK3A/GSK-3, and β-catenin transcriptional factor BAR-1. Our data suggests an important protective response of canonical Wnt/β-catenin signaling to simulated microgravity in nematodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call