Abstract
Weather-induced episodic mixing events in lake ecosystems are often unpredictable, and their impacts are therefore poorly known. The impacts can be short-lived, including changes in water temperature and stratification, but long-lasting effects on the lake’s biology may also occur. In this study we used automated water quality monitoring (AWQM) data from 8 boreal lakes to examine how the episodic weather-induced mixing events influenced thermal structure, hypolimnetic dissolved oxygen (DO), fluorometric chlorophyll estimates (Chl-a), and lake metabolism and how these events varied in frequency and magnitude in lakes with different characteristics. Rise in wind speed alone had an effect on the lakes with the weakest thermal stability, but a decrease in air temperature together with strong wind induced mixing events in all lakes. The return period of these mixing events varied widely (from 20 to 92 d) and was dependent on the magnitude of change in weather. In lakes with strong stability, thermal structure and hypolimnetic DO concentration were only slightly affected. Weather-induced mixing in the upper water column diluted the surface water Chl-a repeatedly, whereas seasonal maximum occurred in late summer on each lake. Although Finnish lakes have been characterized with stable stratification during summer, we observed many substantial mixing events of relatively short return periods relevant to both chemical and biological properties of the lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.