Abstract

Soil respiration is an important component of the global carbon cycle and is highly responsive to disturbances in the environment. Human impacts on the terrestrial ecosystem lead to changes in the environmental conditions, and following this, changes in soil respiration. Predicting soil respiration and its changes under future climatic and land-use conditions requires a clear understanding of the processes involved. The observation of CO2 fluxes was conducted at an urban grassland, where plants were removed and respiration from bare soil was measured. Nine soil respiration models were applied to describe the temperature dependence of heterotrophic soil respiration. Modified models were suggested, including a linear relationship of the temperature sensitivity and base respiration coefficients with soil temperature at various depths. We demonstrate that modification improves the simulated soil respiration. The exponential and logistic models with linear dependences on the model parameters from the soil temperatures were the best models describing soil respiration fluxes. Variability of the apparent temperature sensitivity coefficient (Q10) was demonstrated, depending on the model used. The Q10 value can be extremely high and does not reflect the actual relationships between soil respiration and temperature. Our findings have important implications for better understanding and accurately assessing the carbon cycling characteristics of terrestrial ecosystems in response to climate change in a temporal perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call